Blast Injuries

Physics and Physical Consequences

François I. Luks
Division of Pediatric Surgery
Hasbro Children’s Hospital
Alpert Medical School of Brown University
Providence, Rhode Island
Blast Injuries

• Why should we worry about explosions?
 • Rhode Island is not a war zone, but…
 • Not all blast injuries occur in Iraq
 • Not all blast injuries are war-related
Blast Injuries

• **Presentation**
 • Acts of war or terrorism
 • Occupational hazard
 • Isolated injuries
 • Unsafe behavior
 • Children: victims
 • Of war
 • Of lack of judgement
 • Of curiosity
Blast Injuries

• Definitions
 • Explosion: rapid release of energy
 • Radial expansion of the energy
 • “Ideal Shock Wave”
 • Reflecting and absorptive forces
 Buildings and objects
 People
Blast Injuries

(Distances in 10's of Ft, Contours in Psi)

3D Overpressure Contour Plot

bldng.bpe 04/17/97 11:31 Yld=75.0 Lbs HoB=3.00 Ft Ah=NONE Av=NONE

Engineering Analysis, Inc., Huntsville, AL
Blast Injuries

Engineering Analysis, Inc., Huntsville, AL
Blast Injuries

• Definitions
 • Explosion: rapid release of energy
 • Radial expansion of the energy
 • Direct and indirect effects
 • Primary blast injuries
 • Secondary blast injuries
 • Tertiary blast injuries
 • Quaternary blast injuries
Blast Injuries

Classification

- Primary:
 - Direct effect of blast energy on the body
- Secondary:
 - Projectiles set in motion by blast
- Tertiary:
 - Displacement of body (parts), crush
- Quaternary:
 - Burns, inhalation, toxins
Blast Injuries

All you’ll ever need to know about trauma

- Mass casualties/disaster planning
- Triage
- Burns
- Inhalation injury
- Pressurization injury
- Blunt trauma
- Penetrating trauma
Blast Injuries

Classification

- Primary:
 - Direct effect of blast energy on the body
- Secondary:
 - Projectiles set in motion by blast
- Tertiary:
 - Displacement of body (parts), crush
- Quaternary:
 - Burns, inhalation, toxins
Blast Injuries

Friedlander wave

Pressure

Baseline

Peak overpressure

Positive phase (Blast wave)

Negative phase (vacuum)
Blast Injuries

Primary blast effect

- Negative phase (Blast wind)
 - Lasts 10x longer than positive phase
 - Causes vacuum
 - “Sucks” objects into area
- Windows pulled out of buildings
- Flying debris
Blast Injuries

Primary blast effect

Oklahoma City - April 1995 - 18 years ago
Blast Injuries

Primary blast effect

- 19 children in 2nd floor day-care
- First comprehensive study of blast injuries in children

Blast Injuries

Primary blast effect

- …but not the first pediatric blast disaster
- 1927 Bath school bombing

Kim D et al, J Surg Res 2010
Blast Injuries

Primary blast effect

- Maximal impact within blast perimeter
Blast Injuries

Primary blast effect

- Immediate proximity:
- Head trauma
 - Major cause of death in children

Non-survivable head injuries 90%

Blast Injuries

Primary blast effect

- Immediate proximity:
 - Head trauma
 - Cause of death in 41.6% of victims

Blast Injuries

Primary blast effect

- Blast wave = sound wave
- Travels readily through air
 - = 500 m/sec
Blast Injuries

Primary blast effect

- Blast wave = sound wave
- Travels readily through air, *but*
 - Rapid dissipation
 - Energy decreases rapidly
 - …in open space
Blast Injuries

Primary blast effect

• Blast wave = sound wave
• Travels readily through air, *but*
 • Rapid dissipation
 • Energy decreases rapidly
 • …but not if enclosed
Blast Injuries

Primary blast effect

- Madrid train bombings (March 2004)
 - 191 dead, 1,800 wounded
- Boston marathon bombings (April 2013)
 - 3 dead, 264 wounded
Blast Injuries

Mass Casualty Incident (MCI)

- Mortality:
 - Structural collapse 25% (6-44%)
 - Confined space 4% (0-9%)
 - Open space 2% (0-4%)

- Rationing care rarely needed in open explosions
Blast Injuries

Primary blast effect

- Travels more slowly in solids/liquids
- Maximal effect at interfaces
Primary Blast Injuries

- **Mechanisms**
 - Shock wave converted into:
 - Stress wave
 - Shear wave
Primary Blast Injuries

• **Shear waves:**
 - Occurs at points of attachment
 • Ligament of Treitz
 • Aortic arch (ductus)
Primary Blast Injuries

- **Stress waves:**
 - Mostly at interfaces:
 - Solid/Air
 - Solid/Liquid
 - Air/Liquid
Blast Wave Velocity

Air-solid interface
Blast Wave Velocity

Solid-air interface
Primary Blast Injuries

- **Stress waves:**
 - Mostly affect air-containing organs:
 - Lung
 - Intestines
 - (Middle) ear
Primary Blast Injuries

- **Lung:**
 - Prime target:
 - Large volume
 - Complex air-fluid-solid structure
 - (Massive) alveolar disruption:
 - Emphysema-like pattern
 - Simultaneous capillary rupture:
 - Pulmonary contusion
Primary Blast Injuries

• **Lung:**
 - Tracheal rupture
 - Bronchial rupture
 - Pulmonary contusion
 - Tension pneumothorax
 - Rarely: rib fractures
Primary Blast Injuries

- Blast lung:
 - “Butterfly” contusion
Primary Blast Injuries

- **Lung trauma management:**
 - Positive pressure ventilation:
 - May worsen barotrauma
 - May cause systemic air emboli
 - Without intubation:
 - Hypoxia
 - Hypercapnia may worsen brain insult
 - Head injury and coma: apnea
Primary Blast Injuries

- **Lung trauma management:**
 - Unconventional therapies:
 - High frequency jet ventilation
 - Nitric oxide
 - One-lung ventilation
Primary Blast Injuries

• **Gastrointestinal tract:**
 • Less common than lung injury
 • More common in underwater blasts
 • Solid objects have more inertia
 • Ligament of Treitz rupture
 • Mechanism:
 • Hemorrhage
 • (Delayed) ischemia
 • Perforation and peritonitis
Primary Blast Injuries

- **Special situations:**
 - Underwater explosions
 - Waves travel slowly, but don’t dissipate
 - Wading injuries:
 - Abdominal and lower lung lobe injuries
 - Upper lobes relatively spared
Primary Blast Injuries

- **Ear:**
 - Ear is designed to sense sound
 - Blast wave = “sound” wave

- **Injuries:**
 - Rupture of tympanic membrane
 - Ossicle injury: 33%
 - Neurosensory deficits
 - Balance problems
Primary Blast Injuries

- **Ear:**
 - Injury depends on head orientation
Primary Blast Injuries

• **Ear:**
 • Injury depends on head orientation
 • Poor correlation with other injuries:
 • Lung
 • Intestines
Primary Blast Injuries

- **Ear:**
 - Retrospective study - Israel
 - Survivors of 11 terrorist attacks
 - 647 patients
 - 193 sustained primary blast injuries
 - 18 lung alone
 - 31 lung + ear
 - 142 ear alone
 - Outcome independent of ear injuries

Primary Blast Injuries

• **Ear:**
 - U.S. military – I.E.D. in Iraq
 - 167 patients in 30 days
 - 16% had TM perforation
 - 7% had *other* primary blast injuries
 - 3.6% pneumothorax
 - 1.1% pulmonary contusion
 - Sensitivity of TM as marker for other injuries: 50%

Harrison CD et al. J Trauma 2009
Blast Injuries

- Secondary blast injuries:
 - Blast wave sets objects in motion
 - Bomb shrapnels
 - Projectiles
 - Objects travel further than the blast wave
Blast Injuries

- **Secondary blast injuries:**
 - Blast wave sets objects in motion
 - Bomb shrapnels
 - Projectiles

Guermazi A et al, Arthritis Care Res 2013
Blast Injuries

• Oklahoma City bombing
 • Eye injuries (Mines M, Ophthalmology 2000)
Blast Injuries

- Secondary blast injuries:
 - Penetrating trauma
 - Trunk (largest surface)
 - Eye (most sensitive)
Blast Injuries

- Secondary blast injuries:
 - Penetrating trauma
 - Trunk (largest surface)
 - Eye (most sensitive)
 - Face (immediately life-threatening)
 - Blunt trauma
Blast Injuries

• Secondary blast injuries:
 • Maxillofacial trauma
 • Airway
 • Breathing
 • Circulation
Blast Injuries

• Secondary blast injuries:
 • Ocular trauma
 • Eye = 0.1% of anterior body surface
 • 10% of survivors have eye trauma
 • Vulnerable to small particles
 • Most often penetrating

(Mines M, Ophthalmology 2000)
Blast Injuries

• Secondary blast injuries:
 • Ocular trauma (Mines M, Ophthalmology 2000)
Blast Injuries

- Secondary blast injuries:
 - Ocular trauma (Mines M, Ophthalmology 2000)
 - Corneal abrasion 21%
 - Eyelid/eyebrow laceration 20%
 - Open globe injury 10%
 - Orbital fracture 5%
 - Retinal detachment 4%
 - Corneal burn 3%
 - Globe blow-out 0%
Blast Injuries

- Tertiary blast injuries:
 - Whole body in motion
 - Part of the body in motion
 - Example: landmines
Blast Injuries

Where in the world?

<table>
<thead>
<tr>
<th>Country</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aghanistan</td>
<td>10 million</td>
</tr>
<tr>
<td>Angola</td>
<td>10 million</td>
</tr>
<tr>
<td>Bosnia</td>
<td>6 million</td>
</tr>
<tr>
<td>Cambodia</td>
<td>7 million</td>
</tr>
<tr>
<td>China</td>
<td>10 million</td>
</tr>
<tr>
<td>Croatia</td>
<td>3 million</td>
</tr>
<tr>
<td>Ecuador</td>
<td>60,000</td>
</tr>
<tr>
<td>Egypt</td>
<td>23 million</td>
</tr>
<tr>
<td>Eritrea</td>
<td>1 million</td>
</tr>
<tr>
<td>Honduras</td>
<td>30,000</td>
</tr>
<tr>
<td>Iran</td>
<td>16 million</td>
</tr>
<tr>
<td>Iraq</td>
<td>10 million</td>
</tr>
<tr>
<td>Kuwait</td>
<td>5 million</td>
</tr>
<tr>
<td>Mozambique</td>
<td>3 million</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>108,000</td>
</tr>
<tr>
<td>Somalia</td>
<td>1 million</td>
</tr>
<tr>
<td>Sudan</td>
<td>1 million</td>
</tr>
<tr>
<td>Ukraine</td>
<td>1 million</td>
</tr>
<tr>
<td>Vietnam</td>
<td>3.5 million</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>2 million</td>
</tr>
</tbody>
</table>
Blast Injuries

- **Landmines:**
 - 70 countries worldwide
 - 2,000 injuries/deaths *a month!*
Blast Injuries

• **Landmines:**
 - 70 countries worldwide
 - 2,000 injuries/deaths *a month*
 - Often children
Blast Injuries

- **Landmines:**
 - 70 countries worldwide
 - 2,000 injuries/deaths *a month!*
 - 50% fatal
 - From blast
 - From delay in treatment
 - Contaminated amputations
 - Projectiles to face/trunk
• **Landmines:**
 - Injuries long after the conflict is over
 - Children are injured later (after the war)

Blast Injuries

- Unexploded Ordnances (UXO):
 - Injure more children than landmines
 - 42% when playing/tampering with UXO
 - Children injured: UXO 3x more than mines
 - Good news: easier to clean up (visible)
 - Bad news: curiosity factor (visible)
Blast Injuries

• Unexploded Ordnances (UXO):
 • Injure more children than landmines

Afghanistan 2002-2006

Bilukha OO et al. Prehosp Disaster Med 2008
Blast Injuries

• Types of explosions:
 • Acts of terrorism
 • Acts of Wars
Blast Injuries

• Types of explosions:
 • Acts of stupidity
Blast Injuries

• Types of explosions:
 • Acts of stupidity
 • 95% between June 22 and July 21
 • Burns (most common)
 • Hand injuries (most severe)
 • Eyes (30%)
 • Legs (15%)
 • Individual trauma
Blast Injuries

• **Fireworks injuries:**
 - 8,500 injuries/year (1999)
 - 45% children (>4,000)
 - 40% hand injuries
 - 20% eye injuries
 - 20% head/face injuries
 - 275 permanently blind
 - 16 deaths

Committee on Injury and Poison Prevention, AAP, Pediatrics 2001
Blast Injuries

- Types of explosions:
 - Fireworks *factory* explosion
 (Enschede, Netherlands 2001)
Blast Injuries…

Come in all forms

- Primary blast
 - Occult trauma in survivors
 - Lung injuries!
- Secondary/tertiary injuries
 - Penetrating, blunt, burns…
- Triage!
- Decontamination/radiation
www.hasbro-surgery.org