Pulmonary Anomalies
Mammalian Airway Differentiation
Pulmonary Development

• Five stages
 • From foregut to tracheal bud (embryonic phase)
 • Pseudoglandular phase (6-16 wk)
 • Canalicular phase (16-26 wk)
 • Saccular phase (26-36 wk)
 • Alveolar phase (>36 wk)
Pulmonary Development

• Two important periods
 • Branching morphogenesis
 • From foregut to tracheal bud (embryonic phase)
 • Pseudoglandular phase (6-16 wk)
 • Late gestation growth spurt
 • Canalicular to saccular stage (23-26 wk)
Pseudoglandular stage
16-18 wks

Saccular stage
26-36 wks

Alveolarization
~36 wks → 18 months
Pulmonary Development

• Late gestation growth spurt
 • 22-26 weeks: type II cells secrete fluid
 • Alveoli fill up with lung fluid
 • Lung fluid causes alveolar stretch
 • Alveolar stretch stimulates lung growth + maturation
 • No stretch = no growth spurt
Abnormal Lung Development

• Main result: pulmonary hypoplasia
 • When normal lung development is impaired
 • Often associated with some lung immaturity

• The fetus doesn’t need lungs! (Placenta)
 • Pulmonary problems are neonatal problems
Fetal Conditions
Leading to Pulmonary Hypoplasia

• Final common pathway:
 • Compression of lungs
 • Preventing alveolar stretch
 • Delayed or arrested lung growth/maturation
Fetal Conditions
Leading to Pulmonary Hypoplasia

• Final common pathway:
 • Compression of lungs
 • Preventing alveolar stretch
 • Delayed or arrested lung growth/maturation
Fetal Conditions
Leading to Pulmonary Hypoplasia

• Absent fetal breathing:
 • Muscular dystrophy-like syndromes
 • Neurological anomaly (no breathing motion)
Fetal Conditions
Leading to Pulmonary Hypoplasia

• Extrinsic chest compression:
 • Chronic oligohydramnios/anhydramnios (no fluid)
 • Bilateral urinary obstruction, renal failure
 • Bilateral renal agenesis (Potter syndrome)
 • Chronic amniotic leak
Fetal Conditions
Leading to Pulmonary Hypoplasia

• Intrinsic chest compression:
 • Chest mass
 • Congenital Cystic Lung Lesion
Fetal Conditions
Leading to Pulmonary Hypoplasia

- Intrinsic chest compression:
 - Congenital Diaphragmatic Hernia
Pulmonary Hypoplasia

- Final common pathway:
 - Lung cannot expand
 - No alveolar stretch
 - No stimulus for late growth spurt

- At 26-28 weeks
Congenital Diaphragmatic Hernia

- Bochdalek: Posterolateral (most common)
 - Left >> Right
- Morgagni: Anterior; less common, better Px
- 1:2,500 births
Congenital Diaphragmatic Hernia

- Poor prognostic indicators:
 - Early diagnosis (<25 weeks)?
 - Indicates prolonged lung compression
 - Stomach in the chest?
 - Polyhydramnios?
 - Liver in the chest
 - Lung-Head Ratio (LHR)
 - MRI volumetry
Congenital Diaphragmatic Hernia

- Prognosis:
 - 1970s: >80% mortality at birth
 - Impetus for fetal intervention?
 - 1980s-90s: Improved postnatal care
 - 1990s: 60-70% survival
 - New century: >75% survival
 - Severe subgroup: mortality still elevated
 - Who are they?
Congenital Pulmonary Airway Malformation (CPAM)

- Cystic Adenomatoid Malformation (CCAM)
- Pulmonary sequestration
- Bronchogenic cyst
- Common origin?
 - Abnormal tissue ‘buds off’
 - Combinations
 - Hybrid lesions (contain > 1 type)
Congenital Pulmonary Airway Malformation (CPAM)

• Cystic Adenomatoid Malformation (CCAM)
• Pulmonary sequestration
 • Extralobar sequestration
 • Intralobar sequestration
• Bronchogenic cyst
Congenital Pulmonary Airway Malformation (CPAM)

• In utero:
 • May become very large
 • Mass effect
 • Pulmonary hypoplasia
 • Hydrops (mediastinal shift)
 • “Kink” in vena cava
 • Impaired blood return
 • Cardiac failure
Congenital Pulmonary Airway Malformation (CPAM)

• Natural evolution:
 • Phase of rapid growth (20-25 weeks)
 • 1980s:
 • CPAM grows →
 • causes pulmonary hypoplasia →
 • compresses mediastinum →
 • causes hydrops →
 • fetal death
 • Now: 70-80% regress partially or completely
Prenatal Treatment Options

• Reasons to intervene before birth:

 • Is the fetus at risk of dying?

 • Is the newborn at risk?

 • Is there a long-term risk?
Prenatal Treatment Options

• Is the fetus at risk of dying?
 • Pulmonary hypoplasia: not a fetal problem (Placenta!)
 • Complex genetic/chromosomal anomalies (including lung hypoplasia): little to offer
 • Growing chest mass: risk of mediastinal compression and hydrops (impaired venous return to the heart)
Prenatal Treatment Options

- Is the fetus at risk of dying?
 - Only *fetal* reason to treat: if impending fetal hydrops
 - CCAM/Sequestration (rarely bronchogenic cyst)
 - If few, large (growing) cysts: puncture/drainage
 - If (semi)-solid: surgical resection?
Prenatal Treatment Options

• Is the newborn at risk?
 • General purpose of prenatal intervention:
 • Prevent (or reverse) pulmonary hypoplasia
 • Treat the condition in utero, and allow enough time for the lungs to catch up
 • Only justifiable if extreme hypoplasia
 • But most lesions WILL regress by term
Postnatal Treatment Options

• Is there a long-term risk?
 • Recurrent pulmonary infections
 • CCAM, intralobular sequestrations: communicating with airways (pores of Cohn)
 • Risk of malignancy (CCAM; others as well?)
 • Hybrid lesions (contain more than one type)
 • In general: elective, postnatal resection