Management of children with spina bifida in the age of fetal intervention

FRANCOIS I. LUKS
PETRA KLINGE
Spina Bifida and Neural Tube Defects

Epidemiology

- One of the most common birth defects: 1-2 cases/1,000 births
 - Certain populations have a greater risk:
 - Highest incidence in Ireland and Wales
 - More common in girls
 - U.S.: 0.7/1,000 live births
 - Higher on the East Coast than on the West Coast
 - Higher in whites (1/1,000 births)
 - Lower in African-Americans (0.1-0.4/1,000 births)
Spina Bifida and Neural Tube Defects

• Epidemiology
 ○ Risk factors:
 - Race and ethnicity
 - Family history of neural tube defects
 - Folate deficiency
 - Medication/teratogenic effect: valproic acid
 - Maternal age
 - Diabetes
 - Obesity
 - Increased body temperature

Hol FA et al, Clinical Genetics, 2008
Management of children with spina bifida in the age of fetal intervention

- Embryology of spina bifida
 - Weeks 3-4 of gestation
 - 3 phases:
 - Neurulation
 - Canalization
 - Retrogressive differentiation
Spina Bifida and Neural Tube Defects

• Definitions and Classification
 o Open spina bifida (Aperta)
 ▲ Meningocele in 5%
 ▲ Myelomeningocele (cord and cauda equina exposed) in 95%
 o Closed spina bifida (Occulta)
 ▲ 50% have cutaneous stigmata
 ▲ Lipomyelomeningocele
 ▲ Filum terminale lipoma
 ▲ “Fatty” filum terminale
 ▲ Dermoid sinus and dermoid tumor
Spina Bifida and Neural Tube Defects

- Current management of spina bifida
 - Primary treatment
 - Perinatal care (protection of the neural tube, infections)
 - Closure of the defect
 - Management of hydrocephalus
 - Chiari II hindbrain herniation

Formal evaluation of spina bifida (overlaps with treatment)
- Physical examination: deformities, neuro exam; continence/tone
- Ultrasound
- MRI – brain
- MRI – spine
- Other: genetic testing, specialized imaging
Spina Bifida and Neural Tube Defects

- Definitive repair of the open neural tube defect
 - Posterior vertebral defect
 - Thecal sac
 - Cord extruded into the sac (placode)
 - Plate of embryonic epithelial cells: spinal cord
Definitive repair of the open neural tube defect

- Closure within 24 hours
- No evidence that immediate/urgent closure improves function
- *But*: early closure reduces risk of infection
 - Wound colonization after 36 hours

- Surgical technique: (neurosurgeon + plastic surgeon team)
 - Placode dissected off arachnoid
 - Allowed to drop into spinal canal
 - Dura dissected off skin and lumbodorsal fascia
 - Dura closed
 - Muscular fascia closed
 - Skin closed
Spina Bifida and Neural Tube Defects

- **Definitive repair of the open neural tube defect**
 - Surgical technique: Sharp microdissection of the placode
Spina Bifida and Neural Tube Defects

- **Definitive repair of the open neural tube defect**
 - Continued dissection toward the placode
 - Detethering
Spina Bifida and Neural Tube Defects

- **Definitive repair of the open neural tube defect**
 - Detethering of aberrant nerve roots
Spina Bifida and Neural Tube Defects

- Definitive repair of the open neural tube defect

Paraspinal muscle closure
Spina Bifida and Neural Tube Defects

- Definitive repair of the open neural tube defect
Spina Bifida and Neural Tube Defects

- Pathophysiology and associated disorders
- Hydrocephalus
 - 80-95% incidence in myelomeningocele
 - 100% of 35 thoracic lesions
 - 88% of 114 lumbar lesions
 - 68% of 40 sacral lesions
 - Significant in 20% at birth

Rintoul et al, Pediatrics 2002
Spina Bifida and Neural Tube Defects

- **Management of hydrocephalus**
 - Imaging: ventriculomegaly (Ventricular index > 0.33)
 - Pediatric characteristics:
 - Selective thinning of the occipital cranial vault and cortex:
 - Rigid nuclear masses (basal ganglia) in the frontal lobe
 - Monitor head circumference!
Spina Bifida and Neural Tube Defects

- Management of hydrocephalus
 - Serial head ultrasounds in the newborn:
Spina Bifida and Neural Tube Defects

- **Management of hydrocephalus**
 - Temporary drainage:
 - Lumbar puncture
 - External ventricular drainage, reservoir
 - **Shunt**
 - Weight >2.5 kg
 - No active infection
 - Medically stable
 - **Endoscopic third ventriculostomy**
Spina Bifida and Neural Tube Defects

- **Management of hydrocephalus**
 - **Types of shunts:**
 - Adjustable valves
Spina Bifida and Neural Tube Defects

- **Management of hydrocephalus**
 - Endoscopic third ventriculostomy
Spina Bifida and Neural Tube Defects

- Pathophysiology and associated disorders
- Chiari II malformation
 - 99% of myelomeningocele have radiographic Chiari II
 - Only symptomatic ones require treatment (30% at 5 years)
 - Responsible for 15-20% of deaths in children with MMC
 - Respiratory failure/arrest
 - Syringomyelia
Spina Bifida and Neural Tube Defects

- Treatment of Chiari II malformation
Current management of spina bifida

- Secondary management
 - Relatively recent: now that these children survive long-term
 - The most difficult – chronic vigilance
 - CNS monitoring:
 - VP shunt management
 - Management of tethered cord (10%)
 - Physical therapy evaluation/motor function of lower extremities
 - Preventive medicine – insensate lower body
 - Psychological support
Spina Bifida and Neural Tube Defects

- **Current management of spina bifida**
 - Secondary management
 - Management of tethered cord
 - Second detethering surgery for decline in function and/or before correction of scoliosis
• Which organ systems does it affect?
 ○ Neuro-motor
 ○ Neurodevelopmental, hydrocephalus, CNS development
Spina Bifida and Neural Tube Defects

- **Which organ systems does it affect?**
 - Neuro-motor
 - Neurodevelopmental, hydrocephalus, CNS development
 - Urogenital
 - Gastrointestinal
 - Gastroesophageal reflux disease (GERD)
 - Constipation
 - More commonly: incontinence
 - Other
 - Variability in severity for all systems (GI specifically)
Peripheral effects of open neural tube defect

- Exposed spinal cord during gestation
- (Progressive?) damage to the exposed neural tube
- Variable paresis, urine & stool incontinence
- CSF leak into amniotic cavity
 - Basis for prenatal testing: leakage of alpha-fetoprotein (AFP)
 - Increased concentration in the amniotic fluid (amniocentesis)
 - Maternal Serum AFP (MSAFP) elevated as well
 - False-positives: any other cause of AFP leakage: gastroschisis
• Peripheral effects of open neural tube defect
 ○ Exposed spinal cord during gestation
 ○ (Progressive?) damage to the exposed neural tube

• Could spina bifida be cured – or even prevented?
• **Embryology of spina bifida – can it be prevented?**
 - **Progressive development theory**
 - Is only one theory – and the most simplistic one
 - Prolonged in utero exposure of the neural tube leads to
 - Chronic leakage of CSF
 - Gradual siphoning and hindbrain herniation
 - Increased risk of hydrocephalus
 - Progressive damage to the neural placode
 - Progressive peripheral nerve damage
 - Lower extremity function
 - Sphincter function
Management of children with spina bifida in the age of fetal intervention

• Spina bifida – can it be diagnosed in utero?
 ○ Ultrasound
 ▪ Spinal defect
 ▪ “Lemon” sign: abnormally shaped skull (head circumference)
 ▪ “Banana” sign: abnormally shaped cerebellum
 ▪ Hydrocephalus
Management of children with spina bifida in the age of fetal intervention

- **Spina bifida – can it be diagnosed in utero?**
 - Magnetic Resonance Imaging
Management of children with spina bifida in the age of fetal intervention

- **Animal experiments – Fetal sheep**
 - Creation of a neural tube defect in a mid-gestation lamb:
 - Leads to phenotype resembling clinical spina bifida
 - Causes hind limb paralysis
 - Causes hydrocephalus

In utero surgery rescues neurological function at birth in sheep with spina bifida

Management of children with spina bifida in the age of fetal intervention

- **Animal experiments – Fetal sheep**
 - Creation of a neural tube defect in a mid-gestation lamb:
 - Leads to phenotype resembling clinical spina bifida
 - Causes hind limb paralysis
 - Causes hydrocephalus
 - Closure of the defect in utero:
 - Corrects all these problems

Meuli M et al, Nature Medicine 1995
Animal experiments – Fetal sheep

- Creation of a neural tube defect in a mid-gestation lamb:
 - Leads to phenotype resembling clinical spina bifida
 - Causes hind limb paralysis
 - Causes hydrocephalus

- Closure of the defect in utero:
 - Corrects all these problems

- Caveat: because this is a surgical created, then corrected defect, it may not be the same as the clinical syndrome
Management of children with spina bifida in the age of fetal intervention

- **Animal experiments – better models?**
 - Mouse models: loss of grainyhead-like (Grhl) gene function:
 - Grhl-3 mutation: ct (curly-tail) mouse
 - Grhl-2 mutation: Axd (axial defects) mouse
Management of children with spina bifida in the age of fetal intervention

- Fetal surgery for spina bifida: from sheep to man
 - Proof of concept in animal model
Management of children with spina bifida in the age of fetal intervention

- Fetal surgery for spina bifida: from sheep to man
 - Proof of concept in animal model
 - Progress in fetal surgery for other indications

Luks FI et al, J Pediatr Surg 1993
Management of children with spina bifida in the age of fetal intervention

- Fetal surgery for spina bifida: from sheep to man
 - Proof of concept in animal model
 - Progress in fetal surgery for other indications
 - Endoscopic fetal surgery for Twin-to-twin Transfusion Syndrome
Management of children with spina bifida in the age of fetal intervention

- Fetal surgery for spina bifida: from sheep to man
 - Proof of concept in animal model
 - Progress in fetal surgery for other indications
 - Endoscopic fetal surgery for Twin-to-twin Transfusion Syndrome
 - 1998: Vanderbilt reports on endoscopic repair of MMC
 - 2/4 survivors – technique abandoned

Management of children with spina bifida in the age of fetal intervention

- Fetal surgery for spina bifida: from sheep to man
 - Proof of concept in animal model
 - Progress in fetal surgery for other indications
 - Endoscopic fetal surgery for Twin-to-twin Transfusion Syndrome
 - 1998: Vanderbilt reports on endoscopic repair of MMC
 - 2/4 survivors – technique abandoned
 - Early 2000: anecdotal, then non-randomized series
 - Vanderbilt, CHOP, UCSF
 - In utero repair is feasible
Management of children with spina bifida in the age of fetal intervention

- Fetal surgery for spina bifida: from sheep to man
 - Proof of concept in animal model
 - Progress in fetal surgery for other indications
 - Endoscopic fetal surgery for Twin-to-twin Transfusion Syndrome
 - 1998: Vanderbilt reports on endoscopic repair of MMC
 - 2/4 survivors – technique abandoned
 - Early 2000: anecdotal, then non-randomized series
 - Vanderbilt, CHOP, UCSF
 - In utero repair is feasible
 - Possible improvement over postnatal repair? Less hydrocephalus?
 - Final conclusion: it does NOT improve motor function
Management Of Myelomeningocele Study: The MOMS trial

- **Started in 2003**
 - Randomized to 3 prenatal centers or postnatal R/
 - Goal: 100 patients/arm
 - Prenatal closure at 19-25 weeks
 - All deliveries in a MOMS center
 - Vanderbilt, Nashville
 - University of California San Francisco
 - Children’s Hospital of Philadelphia
- **Hypothesis:**
 - Fetal repair delays hydrocephalus, prevents Chiari II
 - Not: Better chance of walking!
Management Of Myelomeningocele Study: The MOMS trial

- **Started in 2003**
 - Was supposed to take only 3 years
 - By 2010: Still only 140 patients recruited (of 200 needed)
 - Late 2011: Study suddenly stopped at 85% recruitment
 - Why? Because of better-than-expected results!

New York Times 2011
Results (%)

<table>
<thead>
<tr>
<th></th>
<th>Fetal</th>
<th>Control</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shunt criteria met</td>
<td>65</td>
<td>92</td>
<td><0.01</td>
</tr>
<tr>
<td>Shunt placed</td>
<td>40</td>
<td>82</td>
<td><0.01</td>
</tr>
<tr>
<td>Hindbrain herniation</td>
<td>64</td>
<td>96</td>
<td><0.01</td>
</tr>
<tr>
<td>Moderate or severe</td>
<td>25</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Baylor Psychomotor</td>
<td>64.0</td>
<td>58.3</td>
<td>0.03</td>
</tr>
<tr>
<td>Walking unassisted</td>
<td>42</td>
<td>21</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Complications (%)

<table>
<thead>
<tr>
<th>Maternal complications</th>
<th>Fetal</th>
<th>Control</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary edema</td>
<td>6</td>
<td>0</td>
<td>0.03</td>
</tr>
<tr>
<td>Placental abruption</td>
<td>6</td>
<td>0</td>
<td>0.03</td>
</tr>
<tr>
<td>Chorioamnionitis</td>
<td>3</td>
<td>0</td>
<td>0.24</td>
</tr>
<tr>
<td>Preeclampsia</td>
<td>4</td>
<td>0</td>
<td>0.12</td>
</tr>
<tr>
<td>Blood transfusion</td>
<td>9</td>
<td>1</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Management Of Myelomeningocele Study: The MOMS trial

Complications

<table>
<thead>
<tr>
<th>Neonatal complications</th>
<th>Fetal</th>
<th>Control</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth weight (kg)</td>
<td>2.38</td>
<td>3.04</td>
<td><0.001</td>
</tr>
<tr>
<td>Respiratory distress (%)</td>
<td>21</td>
<td>6</td>
<td>0.001</td>
</tr>
<tr>
<td>Mean GA at birth (wk)</td>
<td>34.1</td>
<td>37.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Born <30 wk (%)</td>
<td>13</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Born 30-34 wk (%)</td>
<td>33</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Management Of Myelomeningocele Study: The MOMS trial
Complications (%)

<table>
<thead>
<tr>
<th>Pregnancy complications</th>
<th>Fetal</th>
<th>Control</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligohydramnios</td>
<td>21</td>
<td>4</td>
<td>0.001</td>
</tr>
<tr>
<td>PROM</td>
<td>46</td>
<td>8</td>
<td><0.001</td>
</tr>
<tr>
<td>Uterine wound:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact and healed</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very thin</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some dehiscence</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Management of children with spina bifida in the age of fetal intervention

- In utero repair of spina bifida: how is it done?
- Maternal and fetal anesthesia
 - General anesthesia
 - Uterine relaxation
 - Inhalation anesthesia
 - Preserved placental circulation
 - Arterial line
 - Epidural for analgesia
 - MgSO$_4$ for CP prevention
 - Steroids (prematurity)
Management of children with spina bifida in the age of fetal intervention

- In utero repair of spina bifida: how is it done?
- Multidisciplinary team approach
 - Maternal Anesthesia
 - Maternal-Fetal Medicine
 - Pediatric Surgery
 - Pediatric Neurosurgery
 - Pediatric Plastic Surgery
 - Neonatology
Management of children with spina bifida in the age of fetal intervention

- In utero repair of spina bifida: how is it done?
- Wide maternal laparotomy
 - Full exposure of the uterus
Management of children with spina bifida in the age of fetal intervention

- In utero repair of spina bifida: how is it done?
- Partial exteriorization of the uterus
 - Ultrasound-guided mapping of the placenta, fetus
 - Stapled hysterotomy (preservation of membranes)
Management of children with spina bifida in the age of fetal intervention

- In utero repair of spina bifida: how is it done?
- Exposure of the neural tube defect
In utero repair of spina bifida: how is it done?
Exposure of the neural tube defect
Meticulous, but rapid closure
Management of children with spina bifida in the age of fetal intervention

Postnatal repair *versus* Prenatal repair?

<table>
<thead>
<tr>
<th>Postnatal repair</th>
<th>Prenatal repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Separation of placode from epithelium</td>
<td>A. Same, but much faster</td>
</tr>
<tr>
<td>- “Trimming of the placode”</td>
<td>- Healthy cord without epithelium, inflammation or infarction</td>
</tr>
<tr>
<td>- Use of surgical microscope</td>
<td>- No trimming of the placode</td>
</tr>
<tr>
<td>B. Preservation of placode, vascular supply</td>
<td>B. Same, but no significant dural vascular supply (“bloodless” placode)</td>
</tr>
<tr>
<td>- “Meticulous” hemostasis and microdissection</td>
<td>- No use of microscope</td>
</tr>
<tr>
<td>- Use of surgical microscope</td>
<td></td>
</tr>
<tr>
<td>C. Anatomical reconstruction</td>
<td>C. No!</td>
</tr>
<tr>
<td>- Prevention of re-tethering, ischemia, CSF leak, infection</td>
<td>- Only attempt to approximate dura and skin</td>
</tr>
<tr>
<td>- Sufficient dissection of dural layer to prevent ischemia</td>
<td>- Occasional dural/skin substitute</td>
</tr>
<tr>
<td>- Myofascial skin/subcutaneous fat dissection, preparation and closure are important!</td>
<td>- Counsel parents: fetal repair is not formal and anatomic repair</td>
</tr>
<tr>
<td></td>
<td>- Second repair after birth</td>
</tr>
<tr>
<td></td>
<td>- Close watch for tethering</td>
</tr>
</tbody>
</table>
Management of children with spina bifida in the age of fetal intervention

• The post-MOMS era
 ○ How has it changed the management of spina bifida?
 ○ Increasing number of centers offer the procedure
 ○ Strict selection criteria
 ▫ Not for all lesions or all gestational ages (window)
 ▫ Maternal physiology and phenotype
 ▫ Psychological evaluation
 ▫ Not an alternative to termination
 ▫ No guaranteed results
 ▫ Maternal complications
 ▫ Mandatory C/Section for this and future pregnancies
Management of children with spina bifida in the age of fetal intervention

MOMS II
- Further analysis of the results in the initial cohort
 - It improves motor function
- Does it improve GERD?
 - No real evidence (25% if shunted, v. 8% if not shunted)
- Does it improve continence?
 - No word yet – but the answer appears to be “no”
- Does it improve cognitive outcome?
 - Unclear – but encouraging results at 30 months...
- Does it prevent/ Improve Tethering?
 - No word yet – but appears to be the opposite

Danzer E et al, Neuropediatrics 2008
Conclusions:

- Postnatal treatment remains the gold standard
- Selected patients may benefit from prenatal intervention
- Primary goal is rapid closure of the defect
- Early treatment of hydrocephalus and Chiari malformation
- Secondary treatment is long and difficult
 - Neurological effects
 - Urogenital effects
 - Gastrointestinal effects
 - Psychological support

Management of children with spina bifida in the age of fetal intervention